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CYCLOTRON MASER INSTABILITY FOR INTENSE SOLID ELECTRON BEANS

Han S. Uhm
~~ Department of Physics and Astronomy

University of Maryland
College Park, Maryland 20742

and 

*• t. Ronald C. Davidson
Office of Fusion Energy
Department of Energy

Washington, D. C. 20545

• / Cf7S
The cyclotron maser instability for a solid relativistic

electron beam propagating parallel to a uniform axial magnetic

field ~~~~ is investigated. The stability analysis is

carried out within the framework of the linearized Vlasov—• t 0
Maxwell equations. It Is assumed that v / y< < l , where v is

Budker’s parame ter and ymc is the electron energy . Stability ~~
properties are investigated for the choice of equilibrium .4 (SI C.4

0 0 0
distribution function In which all electrons have the same

value of total perpendicular energy , the same value of axial

velocity, and a step—function distribution in canonical

~~~~~ 0
angular momentum . The instability growth rate is calculated

including a determination of the optimum value of the beam

radius for maximum growth. It is found that the maximum

growth rate for a solid beam is comparable to the maximum

growth rate for a hollow beam.
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I. INTRODUCTION

In recent years, the cyclotron maser instability~~
9 has been

extensively investigated with particular emphasis on the implications

for intense microwave generation. For the most part, previous theoretical

analyses of this instability have been carried out for hollow electron

beams.69 The present paper examines the equilibrium and cyclotron

maser stability properties of a solid relativistic electron beam within

the framework of the linearized Vlasov—Maxwell equations, including a

determination of the optimum value of the beam radius R
0 for maximum

growth rate.

The present analysis is carried out for an Infinitely long

electron beam propagating parallel to a uniform axial magnetic field

• 

. ~~~~ 
Equilibrium and stability properties are calculated for the

specific choice of electron distribution function [Eq. (3)],

f °(H.. P 0 1P )  2 iry 0m 6(H i
_
~r 0mc 2)•(P 8

_P
ø) S ( P

~
.4mV

~
)

where HL is the perpendicular energy, 
~e is the canonical angular

momentum, P~ is the axial canonical momentum , •(x) is the Heaviside

step function, and a0, y0, y, P~ , and V~ are constants. Equilibrium

properties are examined in Sec. II, and stability properties are

investigated in Secs. III and IV, assuming that v/y<<l , where v is

Budker’s parameter.

Introducing the normalized Doppler—shifted eigenfrequency

the TE mode dispersion relation can be expressed

as [Eq. (31)].

- 
~~~~~ 

[s/a
0~J2

(a
0
)]2(Q Z -s~~8~H5)—O ,

L. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _
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where J
~
(x) is the Bessel function of the first kind of order ~~,

is the electron cyclotron frequency, k is the axial

wavenumber, w is the complex eigenfrequency, aOn is the nth

root of Jl(uOn)~
O, 8~— (y~—1)Iy~, s 1,2,3,... denotes the magnetic

harmonic number, and Q and H
5 
are coupling coefficients [Eq. (27)].

Equation (31) is valid when the group velocity of the vact~um waveguide

mode is approximately equal to the beam velocity. Evidently, for

given s, the maximum TE mode growth rate occurs at a value of RØ/R

corresponding to R
ü
/R
c~
a21/cL0n. Here a21 is the first root of J~(a21)—O.

This result is different from that obtained for a hollow electron

8—9beam.

A detailed numerical analysis of the TE mode [Eq. (21)] and TM mode

[Eq. (22)] dispersion relations is presented in Sec. IV for the ~.ase

where the electron gyroradius is much less than the beam radius, i.e.,

r
t
<<Rø. Two features are noteworthy from the numerical analysis.

First, the system is completely stable to TM mode perturbations

when the group velocity of the vacuum waveguide mode is equal to the

beaw velocity. This appears to be a property unique to the

equilibrium distribution function in Eq. (3), where all electrons have

the same axial velocity . Second , for TE mode perturbations, the maximum

growth rate for a solid beam is comparable to that of a hollow beam.

In this context, we conclude that solid relativistic electron beams

may also be effective in generating intense microwave radiation by the

cyclotron maser instability.

I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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II. EQUILIBRIUM PROPERTIES AND BASIC ASSUMPTIONS

The equilibrium configuration is illustrated in Fig. 1. It

consists of an unneutralized electron beam that is infinite in axial

extent and propagates parallel to a uniform axial magnetic field

The radius of the electron beam is denoted by R0, and a grounded

cylindrical conducting wall is located at radius r R
c
. The applied

magnetic field provides radial confinement of the electrons. As

shown in Fig. 1, we introduce a cylindrical polar coordinate system (r,e,z).

In the present analysis, we assume that the beam radius R
0 
is larger

than twice the thermal electron Larmor radius r
~
, i.e., R

O
>2r

L. It

is also assumed that

v/yc<l (1)

where vuINe
e2/mc2 is Budker ’s parameter, 

0N —2,T I drrn(r) (2)
e e

is the number of electrons per unit axial length. n
0(r) is the

equilibrium electron density, c is the speed of light in vacuo, —e

and m are the electron charge and rest mass, respectively, and ymc 2

is the electron energy in the laboratory frame. The inequality in Eq.

(1) indicates that the beam is very tenuous, so that the perturbed

fields, to lowest order, can be approximated by the vacuum waveguide

fields.
7 

Consistent with the low—density assumption in Eq. (1). we

also neglect the influence of the (weak) equilibrium self—electric

and self—magnetic fields that are produced by the lack of

equilibrium charge and current neutralization .

For present purposes, we assume an equilibrium distribution function 

• .~~~~~~~~~~~~ . -— - -• .—- - -.- --

•
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-
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of the form,

— 2:y
0
m 5(H.L_YO

mc2)•(PB
_P
O
)IS(T

z
_4mV

z
) 

‘ (3)

where n
0
—const. is the electron density at r—O , y0

mc2 is the electron

energy in a frame of reference moving with the mean axial velocity

V e of the electron beam,

P0’—(e/2c) (R~—r~)B0 
(4)

is the minimum canonical angular momentum of the electrons, and

1 , x>O ,

•(x) — (5)

0 , xcO ,

is the Heaviside step function. In Eq. (3),

H m c 2 .1(H~+c2p~ ) 1l’2 _ (m 2c4+c2
~

2) I I’2 (6)

is the total electron energy ,

P0”[rp9—(e/2c)rB0] (7)

is the canoni.~al angular momentum, and P — p  is the axial canonical

momentum, where lower case denotes mechanical momentum and the

equilibr ium self f ields hav e been neglected in comparison with the

applied magnetic field B0.

Making use of Eqs. (3) and (4), and defining the effective

electron Larmor radius by

~~~~~~~~~~~~~~~~ (8)

where w~—efi~/mc is the nonrelativiatic electron cyclotron frequency ,

it is straightforward to show that the electron density can be

1. 
~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~
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expressed as

1 , O<r<RO
_r
L

2 2 2
1 1 r— R +r

— — sin~~ ( 2rrL 
L) , R

O
_r
L
<r<R

O
+r
L

0 , otherwise

which is illustrated in Fig. 2. Substituting Eq. (9) into Eq. (2)

gives the number of electrons per unit axial length

Ne~
11n
0
R
~ 

. (10)

Note from Eq. (9) that the parameter R
0 

introduced in Eq. (4) determines

the effective beam radius.

4 - -  
•~~~~~~

— • • - - - • - — - -- • - -
~~
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- --- -— -
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III. LINEARIZED VLASOV—MAXWELL EQUATIONS FOR A TENUOUS BEAN

In this section, we make use of the linearized Vlasov—Maxwell

equations to investigate stability properties for azimuthally symmetric

perturbations (~/9e 0) about a tenuous electron beam equilibrium

described by Eq. (3). We adopt a normal—mode approach in which all

perturbations are assumed to vary with time (t) and axial coordinate

(z) according to

~~~~,t)4(r)exp [i(kz—wt)]

where Ii~~>O, w is the complex eigenfrequency, and k is the axial

wavenumber. Consistent with Eq. (1), it is also valid in lowest

order to approximate the perturbed fields by the vacuum waveguide fields?’8

Without loss of generality, we assume that the amplitudes of the perturbed

axial electric and magnetic fields are normalized according to E
z(r~

O)
~
l

and 
~~
(r.1O)11l. After some straightforward algebraic manipulation, we

obtain

/ 2 \  R2 a 8ira / R e  c
— k~ — 

On “) — — 
On 

2 J dr r 3 (a
0 

r/R )J (r) (11)
\c R

c / [R
~
J2(ao )] ~ 

1 11 c 0

for the t~ansverse electric (TE) waveguide modes, and

(
~ 

- k~ ~~~ 
[ Rj

1(80 fl2 dr r JO øn
r
~~c)(~e~~~ 

- 

(12)

for the transverse magnetic (TM) waveguide modes. [For a detailed

derivation of Eqs. (11) and (12), see Ref. 8]. In Eqs. (11) and (12),

J
~
(x) is the Bessel function of first kind of order t, a0~ and 80n

• are the nth roots of J1(a0~)~0 and and the perturbed

charge and current densities are defined by

4 - —..• - - - 
-
~~~

• - .
.
. :‘ -

• 
-
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f (r ,~) , (13)

and

~ (r)__efd 3p 
~ ~~~~~~~ 

(14)

where ~v.’~/(ym) . The perturbed distribution function in Eqs . (13) and

(14) is expressed as

0 ( v ’x~ (r’)~
f
e~~~~~

,
~~~~~

hh1 eJ’ dr exp{it(kp
z
/ym)_u]t} ~~ (r’) + 

~ ~~~ 
f~

(15)

where r t ’—t , and the particle traj ectories ~ ‘(t ’) and ~ ‘(t ’) satisf y

and d~~’/dt 1__ e
~~

t xB
~~~ /c , with initial conditions ~ ‘(t ’— t )— ~

and ‘(t ” t)”~~. In obtaining Eq. (15) , use has been made of the axial

orbit

z ’— z+(p /ym) (t ‘—t)

For present purposes it is assumed that

~2 I~~u—kV —su <<u (16)
5 Z

where c25
w_kV

~
_su

~ 
is the Doppler—shifted frequency, u

~
111eB

ø/Ymc

is the electron cyclotron frequency in the laboratory frame , and s—l,2,3,...

denotes the magnetic harmonic number. To simplify the present analysis,

we also assume that

viç <<( 8jw~
R

~
/c) 2 

, (17)

where B~ ”(l—l/y~)
1”2. Equation (17) is easily satisfied in parameter

regimes of experimental interest)
4 Within the context of Eq. (17),

it is valid to neglect the terms proportional to af~/~P0 
in Eq. (15),

4 since the corrections associated with these terms are order (v/~)(c/$~w R 0)
2

(<<1) or smaller.

L 
_ _

• a ~
—-- -

~~~
———----—

~~~
--— - -— - — - ••-—-•— --——-— — — —  -•— ———- — -

~~~~~~~~~~
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The particle trajectories r ’(t) and 8’(t)  in the equilibrium fields

are required in order to evaluate the perturbed distribution function

in Eq. (15). The transverse (radial and azimuthal) motion of a typical

electron is illustrated in Fig. 3(a) for a positive value of canonical

angular momentum (P
0
>0), and in Fig. 3(b) for a negative value of

canonical angular momentum (P
0
<O). (The dotted circle is the electron

orbit in a plane perpendicular to the z—axis). The radial distance

of the electron from the z—axis at time t ’—t and at t ’—t ’ are denoted

by r and r ’, respectively. The point C is the gyrocenter of the

trajectory. The angular coordinates • and $
‘ are the perpendicular

velocity—space polar angles at times t ’.’t and t ’—t ’ , and are

related by

•‘=~+(w~ /y ) (t ’—t )

The transverse velocities at time t ’— t and t ”t ’ are denoted by 
~~

and ~j, respectively, and the corresponding speeds are defined by

and vj.(v~
2+v~

2
)
h/’2

.

The time integration in Eq. (15) can be carried out by making use

of the Bessel function summation theorem for the triangles OAB and

ABC in Fig. 3. After some straightforward but tedious algebra, the

perturbed TE mode distribution function can be expressed as

eR p kp 3f0 ~~~ J (a p /m~ R )
c~~ ( y  z~ e , e s On~~ c c

L ~r ,pj  — 
~e “~ a0~cm \ y

~
tfl/ ~~~ ~p2 

yu_sw
~
_kp

~
/m

• (18)
, a p

~ (i)5 exp [isl(8 )]J ,(a
O

r/R )J
+ ,(

91~R
L)

c c

and the perturbed TM mode distribution function is given by

- 
•

- 

• 

~~~~~~~~~~~ 

-.- - ------ --  •- - . —

~~~~~

-- - 

~~~~~ --~~~

-- . -- __-_ __I_-- ----
~
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_- --_ -— ~$.-T--~~-~~— - —  ~~~~~~~ ~~~~~~~~ • -



10

0 -

~~e 
J S (B Of l P .LImwcRc) 

~
e~~ ’~~~

”
~~ ~~~~~ 

yw_s
~~

_kp
2/m ~~~~~~~ 

(i)

(19)
Bo ~~~~~

xexp [is’(0_$)]Js,(Bønr/Rc)Js+s, (
~~:Rc

)

where use has been made of v~”v 2sin(I~’—0’)—(p~/ym)sin(~ ’—0’) and

[For a detailed derivation of Eqs. (18) and (19), the steps are

similar to the derivation of Eqs. (38) and (39) in Ref. 8].

In obtaining Eqs. (18) and (19), we have neglected the mode coupling

between different values of s, which is cons istent with the inequality

in Eq. (16). Contributions from the perturbed radial electric field

have also been neglected in Eq. (19), which is valid provided

the group velocity of the vacuum waveguide mode is significantly

different from the beam velocity. [For TM mode perturbations ,

however, it is shown in Sec. IV that the system is stable when

the group velocity of the waveguide mode is approximately equal to

the beam velocity.]

The equilibrium electron distribution function in Eq. (3) can be

expressed as

2 2 2n r - R +r
f O 

— 
0 

- 
6(p .~.

_mr
L

wC)I5 (P Z_c1n
~ C). ~sin~ — 

2r~ 
L )  (20)

2lTlnr w L
L C

after some simple algebraic manipulation . In Eq. (20), 3.s—e.

Substituting Eqs. (l8)—(20) into Eq. (1l)—(l4), and making use

of 0 (1—V ~Ic 2)~~
”2 and Eq. (10), we obtain the dispersion relation

(
~ 

— k2 — 

~~~~~~ 
~R2J2 (a ) 2 

{(u_kV z )Qs
(
~ Ofl RO/R c~ aOfl rL/R c)

c c n (21)
• (w _k2c2)Hg(a0nR0/Rc~ 

aO rL/R )BJ
— 

(w_kV
z
_SW

c
)
2

for TE mode perturbations, and

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —---- ----- . - - 

~~~~ ~~~ ~~ -i~~~~~~~~~~~~~~~~~~~~
_ • • .  ~~~~~~~~~~~~~~~~~~~~~
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(~
2 

2 B~~\ 
4VK (BOnRO/R ,BO r

L
/R) w_kV

~
2 — k — 2 j - 2 2 u—kV —su

\C  R
c/ 

yR J
1(B.~~

) z

(kc—wV /c)

(u_kVz
_sw

c
) 
2

for TM mode perturbations. In Eqs. (21) and (22) , 8 I.=r Lw / c , ‘•)~~

Nee2 /mc 2 is Budker ’s parameter , and the coupling coefficients

H , Q ,  and K are defined by

H
5(x,y)m (l—y/x)

2
J
2
(x_y)2J1(y)2+2Jt (y)IE(x,y)

Q ( x , y )— 2 ( l— y / x ) 2J2 (x—y ) 2 [J~ (y) 2+yJ ’(y)J ” (y) ]

(23)

+2 [2J~ (y)+yJ~ (y ) ] I E (x ,y)+yJ~ (y) [I E
1(x ,y)

E

K
~
(X,y)a(l_y/X)

2
J1

(X_y)2J5
(y)2+J

5
(y)t

~
(X,y)

where the prime ( ‘) denotes d/dy . The integrals 1E and I~ in Eq. (23)

are defined by

I~~(x ,y ) — - 1
2 J du u J1

(u) f ~ d~ sin~J [(u 2+y2-2uysin~ )~~
’2 ]

—l y—usin3xexp iscos 2 2 1/2(u +y —2uysin4 )

N 1 X+y 0 2 2  - 1/2I ( x ,y) — —i J 
- 

du u J0 (u) J d~ J [(u +y -2uysin~ )
1Tx x y  

~‘o (24)
—l y—usin~xexp iscos 2 2 - 1/2

(u +y —2uysin~)

where

0—s
in ’ (u

2
~~~

_
~c
2 ) . (25)

For the case of small thermal electron Larmor radius,

-•  • - -  — - - — _
~~~~

—-_— — - -

• • _ _ •~ • ~
., ,.

.
. i_-

~~~~~~~~~~~~~~~
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r
L
/RO

(<l , (26)

the terms proportional to I~ and I~ in Eq. (23) are negligible in

comparison with other terms . We, therefore , approximate Eq. (23) by

2 , 2H ( x ,y) .J 2 (x) J5(y)

Q ( x ,y) -2J 2 (x) 2 [J ’( y) 2+yJ ’ (y) J” (y) ] , (27)

K ( x ,y) 1113
1

(x)
2
J (y)

2

For a specified value of Budker ’s parameter (vly)  and perpendicular

beam energy , it is evident from Eq. (27) that the coupling coefficient

between the vacuum waveguide mode and the electron cyclotron resonance

mode (u—kV +sw ) is a maximum when J ’ (cz R /R ) 0  for the TE mode , andz c 2 On O c

when Jj(8o~
Ro/R~

)
~
O for the TM mode. In this context , we conclude

that the maximum coupling for magnetic harmonic number s occurs for a

value of R
0/R given by

TE mode

R0/R — (28)

TM mode

where a21 and are the first roots of J~(a21)’.0 and

respectively. Note from Eq. (28) that the value of R0/R corresponding

to maximum coupling is the same for all magnetic harmonic numbers,

8, 9
which is remarkably different from the results previously obtained

for a hollow electron beam , where the maximum TE mode coupling coefficient

is proportional to J (cz
1

)
2
. As shown in Eq. (27), the max imum TE

mode coupling coefficient for a solid beam is proportional to J2 
(a 21)

2
.

• Therefore, for purposes of producing intense microwave

radiation, it appears that a solid electron beam may be as effective

as a hollow beam. In the following section, the dispersion relations

- ----•—_--~~~~ -- __--

.

~~~~~~~~~~ :~ • •TT~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~

-- -  . 

~~~~~~~~~~~~~~~~~~~
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in Eqs. (21) and (22) are solved numerically for the case of small

thermal Larmor radius, with rL/RO<<l.

I

! IIIILT~~~~~~~~~ . _ _
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IV. STABILITY ANALYSIS

In this section, the linear dispersion relations in Eqs. (21)

and (22) are solved numerically for r
t
<<R

0. For the TE mode dispersion

relation [Eq. (21)], we assume that the group velocity of the vacuum

waveguide mode is approximately equal to the beam velocity,8 i.e.,

2
v _ .!S~

_
~~ y . (29)g w

Making use of the TE vacuum waveguide mode dispersion relation,

2 2 2 2  2u /c —k —a /R , the cyclotron resonance condition, w~kV +tu , and Eq.On c z c
(29) ,  we obtain the lowest—order solution

2
,

k0”y
28 sw /c , (30)

R — a 0 c/y su

2 2 2 — 1
for microwave generation at frequency UPY SW . Here y (l—~~)

and B .V
~
/C. Substituting Eq. (30) into Eq. (21) and iterating, we

obtain the approximate TE mode dispersion relation

Z — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
, (31)

where the normalized Doppler—shifted eigenfrequency Z is defined

by Z
s~

(W_kV
z~
•9
~
)
c)/Wc, Q5 and H are defined in Eq. (27), and x

~
a0nRø/Rc

and y.a0fl
r~ /R~.~~s8L. Since the electron beam is assumed to satisfy

RO
>2r

L 
(see Sec. II), the allowable range of RO /RC is restricted to

R0
/R >2y aBa/cl0 ,  where use has been made of Eq. (29). (Therefore,

in Fig. 4 the growth rate plots are presented only for values of

L
~
/Rc>2yzsBa/aOn.]

I •.~~~~~~~~
• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i~-~ iiii ii-~
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Shown in Fig. 4 are plots of normalized growth rate I1a
~

/w
~
.wj/w

versus R
0
/R obtained from Eq. (31) (TE mode) for ‘v—O .OOl, B

~~
O.4,

and several values of (s ,n). Several features are noteworthy

from Fig. 4. First, the maximum growth rate for each set of (s ,n)

occurs at the value of R,j/R
~ 

given by R0/R cz21/cx
øn. Second, the general

shape of the growth rate curve is similar in form to that obtained for

s—2 perturbations about a hollow electron beam. [See Fig. 7 of Ref.

8.] Third , the maximum growth rate for the solid beam configuration

considered here is comparable to the maximum growth rate for a hollow

beam.
8 

In this context, we conclude that the cyclotron maser instability

in a solid beam may also be an effective means for generating intense

microwave radiation.

We now investigate a typical example that illustrates the dependence

of TM mode stability behavior on k. Figure 5 shows a plot of normalized

growth rate imu/u
c
aw
i
/u
c 

versus normalized axial wavenumber kc/u
~

obtained from Eqs. (22) and (27) for v 0.O0l, R0/R 0.5, rL/RC~
O.l,

n—2 and several values of s. It is evident from Fig . 5 and

Eq. (22) that the growth rate vanishes at k_k0
1uy
~8z

swc/c, which is

identical to the condition in Eq. (29). We therefore conclude

that the system is completely stable to TM mode perturbations when

the group velocity of the vacuum waveguide mode is equal to the

beam velocity. This appears to be a unique property of the equilibrium

distribution function in Eq. (3), where all electrons have the same

axial velocity. It is important to note , however , that the TM mode

growth rate can be substantial for axial wavenumbers different from

2
• y

~ B~
sw

~
/c.
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V. SUMMARY AND CONCLUSIONS

In this paper, we have examined the cyclotron maser instability

for an intense solid electron beam propagating parallel to a uniform

axial guide field. The analysis was carried out within the framework

of the linearized Vlasov—Maxwell equations. The equilibrium

(Sec. II) and cyclotron maser stability (Secs. III and IV)

properties were investigated in detail for the cho ice of distribution

function in which all electrons have the same value of perpendicular

energy, the same value of axial velocity , and a step—function distribu-

tion in canonical angular momentum . One of the most important

conclusions of this study is that the maximum instability growth rate

for a 5olid electron beam is comparable to that of a hollow beam.

Moreover , it is also found that the maximum growth rate for magnetic

harmonic number s occurs at a value of R
0/R

~ 
corresponding to

for TE mode perturbations, and R
O/Rc 1cll1f~On for TM mode

perturbations. For the TM mode, however, the growth rate vanishes

when the group velocity of the vacuum waveguide mode is equal to the

beam velocity. In this context , the TE mode is more effect ive at

producing intense microwave radiation in a solid beam than the TM mode.
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FIGURE CAPTIONS

Fig. 1 Equilibrium configuration and coordinate system.

Fig. 2 Electron density profile [Eq. (9)].

Fig. 3 Electron orbit for (a) P 8>0 , and (b) P0<O projected on a

plane perpendicular to the z—axis .

Fig. 4 Plots of normalized TE mode growth rate wj/w
~ 

versus R
0/Rc

[Eq. (31) ] for v 0.00l , 8~ — O .4 , 8z~
O•3

~ 
and several values

of (s ,n).

Fig. 5 Plots of normalized TM mode growth rate Wi/W c versus kc/w c

[Eq. (22)] for v 0.O0l, n—2 , 8z °~
3’ R0/RcaO•5~ rL/RC O.l,

and several values of s.
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